Synthetic Spirits

Can we use science to reduce the harms of alcohol?

Written byDavid Nutt
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© LJUPCO / ISTOCKPHOTO.COMAlcohol is the oldest of all recreational drugs. While its psychological complications have long been known, only in the past century have its medical complications, such as liver cirrhosis, cardiovascular disease, and cancers, become recognized. In many Western countries these medical problems have increased at an alarming rate. In the United Kingdom, for example, the death rate from liver disease has risen 500% over the past 40 years. It is predicted that, within a decade, liver disease will overtake cardiovascular disease as the leading cause of death in the UK. For these reasons, a recent systematic assessment of drug-related health hazards in the UK scored alcohol as the worst drug overall (Nutt et al., Lancet, 376:1558-66, 2010).

These facts raise two questions: why is alcohol so widely available if it is so toxic and what can we do about it? The answer to the first question appears to be partly due to the fact that many people (and governments) take an ostrich-like view of the health hazards of alcohol. This attitude is compounded by the argument (probably false) that, at low doses and in some populations, alcohol may, in fact, have certain health benefits. Both attitudes belie the facts. If alcohol were invented today and subjected to current safety-of-use assessments, it would fail badly. Ethanol, the active ingredient, is toxic itself, which is why it is used to protect food from microbial infections and to sterilize skin. An amount only three times ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery