Targeting Antibiotic-Resistant Bacteria with CRISPR and Phages

Researchers develop a CRISPR-based, two-phage system that sensitizes resistant bacteria to antibiotics and selectively kills any remaining drug-resistant bugs.

head shot of blond woman wearing glasses
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, DR GRAHAM BEARDS Using bacteriophages to deliver a specific CRISPR/Cas system into antibiotic-resistant bacteria can sensitize the microbes to the drugs, according to a study published this week (May 18) in PNAS. The approach, developed by Udi Qimron of Tel Aviv University and his colleagues, is a modified version of phage therapy that does not require the delivery of phages to infected tissues and could help offset the pressure on bacterial populations to evolve drug resistance, according to the team.

Unlike classic phage therapy, which uses one or more types of phages to infect and lyse specific bacterial strains, the crux of this new approach is using these specialized viruses to supply CRISPR/Cas to rid bacteria of antibiotic-resistance plasmids in the environment before the microbes are able to infect a host. Each phage is specific to a bacterial species or strain and, using CRISPR, researchers can target a specific bacterial sequence.

“The CRISPR technique is at the heart of [this work],” said Michael Terns, a research professor of biochemistry, molecular biology, genetics, and microbiology at the University of Georgia who was not involved in the work. “It’s a nice application of the CRISPR system to attack resistance genes using phage as a vehicle.”

“The classic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome