Targeting Antibiotic-Resistant Bacteria with CRISPR and Phages

Researchers develop a CRISPR-based, two-phage system that sensitizes resistant bacteria to antibiotics and selectively kills any remaining drug-resistant bugs.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, DR GRAHAM BEARDS Using bacteriophages to deliver a specific CRISPR/Cas system into antibiotic-resistant bacteria can sensitize the microbes to the drugs, according to a study published this week (May 18) in PNAS. The approach, developed by Udi Qimron of Tel Aviv University and his colleagues, is a modified version of phage therapy that does not require the delivery of phages to infected tissues and could help offset the pressure on bacterial populations to evolve drug resistance, according to the team.

Unlike classic phage therapy, which uses one or more types of phages to infect and lyse specific bacterial strains, the crux of this new approach is using these specialized viruses to supply CRISPR/Cas to rid bacteria of antibiotic-resistance plasmids in the environment before the microbes are able to infect a host. Each phage is specific to a bacterial species or strain and, using CRISPR, researchers can target a specific bacterial sequence.

“The CRISPR technique is at the heart of [this work],” said Michael Terns, a research professor of biochemistry, molecular biology, genetics, and microbiology at the University of Georgia who was not involved in the work. “It’s a nice application of the CRISPR system to attack resistance genes using phage as a vehicle.”

“The classic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies