Tetraplegic Patients Take Mind-Controlled Wheelchair for a Spin

The mobility device interprets its paralyzed user’s thoughts to steer through cluttered spaces, a study reports.

christie wilcox buehler
| 2 min read
A tetraplegic patient navigates a thought-controlled wheelchair

A tetraplegic patient navigates a thought-controlled wheelchair.

The University of Texas at Austin

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Three people with limited to no mobility in their limbs were able to navigate a specially designed wheelchair just by thinking about where they wanted to go, a study published today (November 18) in iScience reports. Unlike some previous designs which used embedded electrodes or asked users to focus on points of light on a screen, which can cause eye strain, the wheelchair uses a noninvasive brain-machine interface involving an electrode-studded cap to interpret brain activity. After training, the users were able to steer their way through a cluttered obstacle course.

“Our research highlights a potential pathway for improved clinical translation of non-invasive brain-machine interface technology,” study coauthor and University of Texas at Austin computer engineering and neurology researcher José del R. Millán says in a press release from the journal.

See “The Rise of BCI Enables Advances in Neuroscience

The wheelchair is steered by an algorithm that translates brain activity inferred from electroencephalography (EEG) into movement. Tetraplegic users steered the chair by imagining lifting their arms, a signal the chair interprets as an instruction to move right, or their legs, which the chair takes a signal to move left. In the first session, the steering accuracy ranged from 43 to 55 percent, but two of the three participants improved over two to five months of biweekly training to 95 and 98 percent accuracy, according to the press release. The researchers attribute this improvement to both machine learning and human learning, as the two patients exhibited shifts in brainwave patterns by the end of the experiment. The third participant did not show these shifts and did not improve in steering accuracy.

Millán tells The Daily Beast that it’s important to take the less favorable results into account, as it shows “there is no magic bullet,” and that engineers and scientists aiming to enhance people’s mobility “need to have several options, and we also need to understand that the same intervention given to two people will not have the same effect.”

He also notes to New Scientist that the system isn’t quite ready for the real world. “I wouldn’t say the approach is useful on busy streets or less controlled environments,” he says. An additional caveat is that the design requires a gel under the cap that dries out in a few hours, the outlet reports, which limits the wheelchair’s use duration. Still, “the ability to move independently at all can be a huge benefit” to tetraplegic people, he says. University of Kent signal processing researcher Palaniappan Ramaswamy, who was not a part of the research team, also tells New Scientist that advances in gel-free technologies, such as electrodes that can be printed onto the skin, could help make the device ready for prime time in the near future.

Keywords

Meet the Author

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development