The Brain on Fear

Scientists uncover the neurons in the mouse brain responsible for linking the sight of a looming object to scared behavior.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAAnimals respond to fear in predictable ways. A mouse confronted with danger is likely to either freeze in place or run for its life. But how this primal response is elicited in the brain has remained murky. A study in mice published in Science today (June 25) reveals specific neuronal wiring that runs between the eye and the amygdala—the emotion and decision-making center of the brain—that translates the sight of an advancing threat to the animal’s instinct to freeze or flee.

“One of the big challenges in neuroscience is to understand the relationship between molecules, cells, [and] synapses on one hand, and microcircuit function and behavior on the other,” said neuroscientist Peter Jonas of the Institute of Science and Technology in Klosterneuburg, Austria, who was not involved in the work. “It is nice to bridge these different levels and . . . this paper provides a nice example of how this is becoming possible.”

Fear behavior is critical for survival, and animals and humans use all their sensory inputs to detect, assess, and escape from life-threatening situations. In the case of visual threats, researchers have identified cells in the retina that respond to looming objects. Then, in the midbrain, a structure called the superior colliculus, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development