The Gut of Mice Communicates with the Brain Through the Vagus Nerve

The researchers who made the discovery suggest the signaling may form a sixth sense.

Written bySukanya Charuchandra
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: ©ISTOCK, MAN_AT_MOUSE

Previous research has shown that the gut-brain connection, which refers to signaling between the digestive and the central nervous systems, is based on the transport of hormones, but a study published today (September 21) in Science suggests there may be a more direct link—the vagus nerve.

This research presents “a new set of pathways that use gut cells to rapidly communicate with . . . the brain stem,” Daniel Drucker, who studies gut disorders at the Lunenfeld-Tanenbaum Research Institute in Toronto, Canada, and was not involved with the project, tells Science.

Building on an earlier study in which the team found that gut cells had synapses, the researchers injected a rabies virus, expressing green fluorescence, into the stomachs of mice and watched it travel speedily from the intestines to the rodents’ brainstems.

When they grew sensory gut cells together with neurons from the vagus nerve, the neurons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH