The Joint Collector

Forget stamps: one bioengineer amasses broken artificial joints to learn why they failed and how to build better ones.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

JOINT EFFORT: The Frank H. Stelling and C. Dayton Riddle Orthopaedic Research and Education Laboratory, where John DesJardins and colleagues investigate implant design, function, and longevity CRAIG MAHAFFEY

Some people drive more aggressively than others,” says bioengineer John DesJardins. But he’s not talking about cars; rather, he’s referring to artificial joints. As director of the orthopedic design and engineering lab at South Carolina’s Clemson University, he spends much of his time inspecting plastic and metal knee, hip, and shoulder replacements worn out by the reckless “driving” that is human locomotion.

More than 800,000 joints are now replaced each year in the United States, and DesJardins estimates that 90 percent of these surgeries go off without a hitch, and are still functional 10 years after surgery. However, the remaining 10 percent of artificial joints need to be replaced within that time period. These are the artificial joints that grab his attention. Since 2007, DesJardins ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hannah Waters

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours