The Joint Collector

Forget stamps: one bioengineer amasses broken artificial joints to learn why they failed and how to build better ones.

Written byHannah Waters
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

JOINT EFFORT: The Frank H. Stelling and C. Dayton Riddle Orthopaedic Research and Education Laboratory, where John DesJardins and colleagues investigate implant design, function, and longevity CRAIG MAHAFFEY

Some people drive more aggressively than others,” says bioengineer John DesJardins. But he’s not talking about cars; rather, he’s referring to artificial joints. As director of the orthopedic design and engineering lab at South Carolina’s Clemson University, he spends much of his time inspecting plastic and metal knee, hip, and shoulder replacements worn out by the reckless “driving” that is human locomotion.

More than 800,000 joints are now replaced each year in the United States, and DesJardins estimates that 90 percent of these surgeries go off without a hitch, and are still functional 10 years after surgery. However, the remaining 10 percent of artificial joints need to be replaced within that time period. These are the artificial joints that grab his attention. Since 2007, DesJardins ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH