The replication stutter

During replication, DNA polymerases are positioned on each strand of DNA. Using a microscope slide as an anchor, we tethered DNA to a bead and stretched it with a flow of solution. We tracked how the position of the bead changed as the replication machinery went to work. Every time a lagging strand loop is formed in the DNA, the length of the strand is reduced (middle panel). Upon release of this loop, the DNA length suddenly increases, visible as an abrupt motion of the

Written byAntoine van Oijen
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

During replication, DNA polymerases are positioned on each strand of DNA. Using a microscope slide as an anchor, we tethered DNA to a bead and stretched it with a flow of solution. We tracked how the position of the bead changed as the replication machinery went to work. Every time a lagging strand loop is formed in the DNA, the length of the strand is reduced (middle panel). Upon release of this loop, the DNA length suddenly increases, visible as an abrupt motion of the bead (bottom panel). The experiment showed us that the replication machinery takes a break every time a new Okazaki fragment is started.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo