The Search for Methods to Monitor Brain Cooling

Newborns deprived of oxygen have their temperatures lowered to protect against brain damage, but it’s hard to decipher the babies’ immediate response to the intervention.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

BRAIN STORMS: Looking like weather maps on the evening news, these graphs depict the amount of coherence between neuronal function and blood flow (NVC). An HIE baby that received cooling therapy showed greater coupling (left, red blobs), while a baby whose brain was damaged despite cooling therapy showed less (right).SCIENTIFIC REPORTS, 7:45958, 2017

Until a little more than a decade ago, doctors had few options to treat newborns whose brains were deprived of oxygen or blood at birth, a condition known as perinatal hypoxic-ischemic encephalopathy, or HIE. If babies could be stabilized and kept breathing, physicians and nurses could offer only supportive care and had to watch and wait to see how much brain damage their patients would suffer. “This was a disease where we had no treatment that worked, and [around] 60 percent of these babies were either dying or had a disability,” says Rosemary Higgins, a program scientist at the National Institute of Child Health and Human Development.

In 2005, research findings reshaped the field. Higgins and other neonatologists reported the results of a couple of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

June 2017

Foregoing Food

The physiological effects of fasting

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH