© MEDI-MATION LTD/SCIENCE SOURCE
Since its discovery 16 years ago, researchers have been eyeing RNA interference (RNAi)—a natural process of posttranscriptional silencing of genes by small fragments of the nucleic acid—for its potential in therapy, especially in treating forms of cancer and other diseases that are particularly hard to address with existing drugs. But the path of such RNAi therapies to the clinic has been nothing short of a pharmaceutical roller-coaster ride.
Andrew Fire and Craig Mello first demonstrated RNAi in C. elegans in 1998, a discovery recognized in 2006 when they won the Nobel Prize in Physiology or Medicine.1 Interest exploded in 2001 when biochemist Thomas Tuschl and colleagues at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, demonstrated potent and specific RNAi silencing in mammalian ...