Three-Parent IVF Advances

Differences in the replicative advantages conferred by some mitochondrial DNA haplotypes have implications for mitochondrial replacement therapy, researchers report.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

CENTER FOR EMBRYONIC CELL AND GENE THERAPY OF OREGON HEALTH & SCIENCE UNIVERSITY

In efforts to prevent women who have pathogenic mitochondrial DNA (mtDNA) mutations from passing these on to their offspring, researchers have been developing so-called three-parent assisted reproductive techniques. All of techniques in development require an enucleated donor oocyte or a single-cell embryo with non-mutated mtDNA. In a study published today (November 30) in Nature, researchers from the Oregon Health & Science University and their colleagues demonstrate that nuclear DNA from human eggs harboring mutated mtDNA can be transferred to a healthy, nucleus-free donor egg and then successfully fertilized. The researchers also show that certain maternal mtDNA haplotypes may have a replicative advantage, underscoring the potential need to match the donor and carrier egg mtDNA haplotypes.

“This is interesting work that nicely demonstrates effective replacement of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies