Toward Breaking the Cold Chain

Research efforts aim to obviate the need for vaccine refrigeration.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

PIXABAY, PUBLICDOMAINPICTURESEarlier this month, the New Jersey Department of Health announced that 900 children statewide received vaccines that may not have been stored properly. Pediatrician Michael Bleiman allegedly hadn’t refrigerated the shots at the right temperatures, compromising the efficacy of the immunizations and potentially putting kids’ health at risk—not to mention causing headaches for hundreds of families and physicians who now have to determine whether these children need to be revaccinated.

Globally, the problem of improperly stored vaccines is extensive and persistent, especially in developing countries. Many vaccines have a narrow window of allowable storage temps—often 2° C to 8° C. And, according to Raja Rao, a senior program officer at the Bill & Melinda Gates Foundation, limited storage space, poorly performing refrigerators, and a lack of technical support lead to tens of millions of immunizations wasted annually.

At nearly every point along this so-called cold chain—the temperature-controlled safeguarding of vaccines from manufacturer to recipient—people are working to fortify the links. Packaging upgrades, for instance, now alert health care providers if temperatures get too hot or too cold with color-changing sensors. Refrigerator design has also evolved, so even if malfunctioning, the appliances can no longer drop ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel