Turning up the Heat on Brain Tumors

Oncolytic viruses can help glioblastoma respond to immunotherapy.

Aparna Nathan, PhD
| 3 min read
iStock

iStock

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
 Krembil Brain Institute
With a new combination therapy, neurosurgeon Gelareh Zadeh hopes to improve outcomes for glioblastoma patients.
Krembil Brain Institute

Even with the most sophisticated therapies, aggressive glioblastoma tumors typically come roaring back months later. Surgeons are often unable to remove the entire tumor, and immune cells in brain tumors are often suppressed, keeping them from responding effectively to immunotherapies.1 But a new strategy may heat up these immunologically cold tumors to make them more susceptible to immunotherapy.

Researchers have engineered harmless oncolytic viruses that can trick the immune system into launching a response.2 This strategy can be combined with existing immunotherapies, such as immune checkpoint inhibition, for a potent two-stage attack: first, the virus attracts immune cells to the brain, then checkpoint inhibitors help these cells kill tumor cells. A recently published phase 1/2 clinical trial in Nature Medicine shows that this combination may be able to penetrate glioblastomas’ defenses.3

In this study, patients were treated with a combination of the immune checkpoint inhibitor pembrolizumab and an oncolytic virus called DNX-2401 that scientists engineered to target brain cells.3 To get around the blood-brain barrier, a pump pushed the virus directly into the tumor through a thin copper needle.

More than half of the patients survived at least one year with this combination therapy, a significant improvement compared to a baseline 20 percent one-year survival rate.4 “We didn't really anticipate we would have such a strong increase in overall survival,” said Gelareh Zadeh, a neurosurgeon at the University of Toronto and senior author of the study.

E. Antonio Chiocca, a neurosurgeon at Harvard Medical School and Brigham and Women’s Hospital who was not involved in the study, was also impressed by the trial’s results but is wary because many similar combination therapies have ultimately failed in phase 3 trials.

Part of the challenge is the heterogeneity of glioblastoma patients, he said. Different tumors have different molecular characteristics that might make them better or worse at responding to certain therapies. Without taking that into account in trials, “[drugs] die at the altar of the wrong patient population,” Chiocca said. “Understanding what the biomarkers are and what the therapy is really doing is critical to get this field forward.”

Zadeh agrees. Although she is interested in eventually testing the combination therapy in a phase 3 clinical trial, she first wants to better understand how the tumor immune environment might inform what treatment will be most effective: oncolytic virus alone, checkpoint inhibition alone, or the combination.

She was especially intrigued by a subset of patients who responded remarkably well to the combination therapy, surviving as long as 5 years. She took a closer look at the tumors and found that patients with the best response had neither the least nor the most immune cells. Zadeh hopes that studying the gene expression signatures and other biomarkers of these immunologically “lukewarm” patients might help determine the best candidates for not only the combination therapy, but also for oncolytic viruses and immunotherapy individually

“It’s the concept of precision therapy,” Zadeh said. “With this additional knowledge, it’s a treatment that would hopefully be beneficial to all patients with glioblastoma.”


RR


Keywords

Meet the Author

  • Aparna Nathan, PhD

    Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics at Harvard University. Her writing has also appeared in The Philadelphia Inquirer, Popular Science, PBS NOVA, and more.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo