Underground Immunity

Arabidopsis thaliana defense hormones shape the plant’s root microbiome.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, ALBERTO SALGUEROScientists are finally getting a glimpse into how defense hormones shape plant health both above and below the soil, thanks to a study published today (July 16) in Science. The results show how an Arabidopsis thaliana defense hormone, salicylic acid, which helps protect the health of the plant’s shoots and leaves, also guides the growth of microbial communities in and around its roots.

“This is the first study that really tied this phytohormone to the microbiome associated with the root,” said Xinnian Dong, a professor of biology at Duke University who was not affiliated with the work.

Commensal root microbes can confer numerous benefits to a plant, including increased tolerance to environmental stressors like heat, drought, and acidity, and aid in the plant’s acquisition of nutrients. However, little is known about how plants might influence their underground microbial communities, or how a plant’s immune system interacts with the bacteria it encounters in the soil.

To explore these interactions, the University of Tennessee’s Sarah Lebeis and her colleagues grew mutant strains of A. thaliana that were deficient in either the biosynthesis or signaling detection of different key defensive immune ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kara Manke

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development