Underground Immunity

Arabidopsis thaliana defense hormones shape the plant’s root microbiome.

Written byKara Manke
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, ALBERTO SALGUEROScientists are finally getting a glimpse into how defense hormones shape plant health both above and below the soil, thanks to a study published today (July 16) in Science. The results show how an Arabidopsis thaliana defense hormone, salicylic acid, which helps protect the health of the plant’s shoots and leaves, also guides the growth of microbial communities in and around its roots.

“This is the first study that really tied this phytohormone to the microbiome associated with the root,” said Xinnian Dong, a professor of biology at Duke University who was not affiliated with the work.

Commensal root microbes can confer numerous benefits to a plant, including increased tolerance to environmental stressors like heat, drought, and acidity, and aid in the plant’s acquisition of nutrients. However, little is known about how plants might influence their underground microbial communities, or how a plant’s immune system interacts with the bacteria it encounters in the soil.

To explore these interactions, the University of Tennessee’s Sarah Lebeis and her colleagues grew mutant strains of A. thaliana that were deficient in either the biosynthesis or signaling detection of different key defensive immune ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery