Urchin, meet starfish

Investigating interacting networks yields another tool for genome comparisons

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Comparative genomic analysis is increasingly used to provide evidence for phylogenetic relationships and the relative importance of both coding and noncoding DNA sequences. However, simple sequence comparison may not reveal all the relationships among organisms, particularly when they have been separated by vast amounts of evolutionary time. By viewing the interactions of genes as integrated multitasking networks, Veronica Hinman and colleagues at the California Institute of Technology report in the October 27 PNAS that a gene regulatory network (GRN) architecture controlling embryonic endomesoderm development in the sea urchin is strongly conserved in the starfish, despite half a billion years of divergent evolution. Such networks, the authors report, provide another tool for the understanding of genomic regulatory control, functions of noncoding DNA sequences, and mechanisms in evolution (PNAS, DOI:10.1073/pnas.2235868100, October 27, 2003).

Hinman et al. used genes involved in endomesodermal specification in the early embryo in the sea urchin, Strongylocentrotus purpuratus, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH