Using Gene Drives to Limit the Spread of Malaria

Introducing genetic changes into mosquito populations could be key to effective malaria control.

| 10 min read
feature Malaria

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: © NELSON ALMEIDA/AFP/GETTY IMAGES

In recent years, researchers have sequenced the genomes of several Anopheles mosquito species, including those responsible for nearly all of the malaria transmission in Africa. With this information, they have begun to identify the genes underlying the insects’ ability to colonize human habitats, their reproductive biology, and their susceptibility to infection by the malaria parasite (Plasmodium spp.). If we know the genes, or variants of genes, that are responsible for key mosquito traits, such as parasite clearance or egg laying, we can theoretically introduce a genetic modification into the insects that reduces malaria transmission.

The idea has been percolating in the minds of scientists for nearly 20 years, ever since researchers developed a way to introduce genes into mosquitoes. But one challenge has hindered all such efforts to date: how to encourage the spread of a gene modification from a few lab-reared mosquitoes to an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tony Nolan

    This person does not yet have a bio.
  • Andrea Crisanti

    This person does not yet have a bio.

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development