Using Gene Drives to Limit the Spread of Malaria

Introducing genetic changes into mosquito populations could be key to effective malaria control.

| 10 min read
feature Malaria

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: © NELSON ALMEIDA/AFP/GETTY IMAGES

In recent years, researchers have sequenced the genomes of several Anopheles mosquito species, including those responsible for nearly all of the malaria transmission in Africa. With this information, they have begun to identify the genes underlying the insects’ ability to colonize human habitats, their reproductive biology, and their susceptibility to infection by the malaria parasite (Plasmodium spp.). If we know the genes, or variants of genes, that are responsible for key mosquito traits, such as parasite clearance or egg laying, we can theoretically introduce a genetic modification into the insects that reduces malaria transmission.

The idea has been percolating in the minds of scientists for nearly 20 years, ever since researchers developed a way to introduce genes into mosquitoes. But one challenge has hindered all such efforts to date: how to encourage the spread of a gene modification from a few lab-reared mosquitoes to an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tony Nolan

    This person does not yet have a bio.
  • Andrea Crisanti

    This person does not yet have a bio.

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo