Watt Fun!

Her doctoral advisor told her to amuse herself, and Fiona Watt has done just that—probing individual stem cells and determining the genes and molecules that direct them to differentiate or cause them to contribute to cancer.

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Fiona Watt: Deputy Director, Wellcome Trust Centre for Stem Cell Research; Herchel Smith Professor of Molecular Genetics, University of Cambridge; Deputy Director, Cancer Research UK, Cambridge Research Institute. ALEX RUMFORD

Fiona Watt finished her thesis research in record time. It was the late 1970s, and Watt had joined the lab of Henry Harris at Oxford University. Harris had perfected a method for fusing normal cells with cancer cells, an approach that allowed him to look for molecules that prevented the abnormal growth of the resulting hybrid. “When I first went to see Professor Harris, he told me, ‘There are only two intellectually important problems: cancer and differentiation,’” says Watt. “Of course, I agreed—and still do! Then he asked, ‘Which do you want to work on?’ I said, ‘Differentiation.’ So he gave me cancer.”

At the time, Harris had compiled a list of potential molecular markers for cancer cells. His students were working their way down ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Karen Hopkin

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo