Week in Review: January 6–10

Bacterial genes aid tubeworm settling; pigmentation of ancient reptiles; nascent neurons and vertebrate development; exploring simple synapses; slug-inspired surgical glue

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

COURTESY OF BRIAN NEDVEDA set of Pseudoalteromonas luteoviolacea genes associated with the transition of the marine tubeworm Hydroides elegans from a free-swimming larva to its sedentary state encodes components of structures that resemble the contractile tails of bacterial viruses, or phage. These tail-like structures help the animal make the switch, researchers showed in Science this week.

“This is a benchmark paper in biology,” said Margaret McFall-Ngai, a professor of medical microbiology and immunology at the University of Wisconsin-Madison, who was not involved in the work. “For many, many decades people have been . . . trying to figure out how and why marine larvae settle where they do in the environment.”

STEFAN SØLBERGResearchers this week reported on traces of ancient melanosomes found in the skins of three fossilized marine reptiles. In a paper published in Nature, the team suggested that the approach they took could enable the reconstruction of color across a range of extinct taxa.

“The method is pretty fast and minimally destructive,” said Jakob Vinther from Bristol University, who was not involved in the study.

COURTESY OF RAMAN DASIn a Science paper published this week, researchers described the newly identified process of apical abscission, in which nascent neurons are partially dismantled and detached during early vertebrate development. From there, the neuronal pieces navigate to their new homes in the nervous system.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits