What the Sun Does to Photoreceptors

Optometrist and eclipse-chaser Ralph Chou describes how even a partially eclipsed sun can damage the eye.

Written byCatherine Offord
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Two types of photoreceptors react to light falling on the retina. Rod cells (green) are usually located around the edge of the retina and function in peripheral vision. Cone cells (red) are concentrated more centrally, and are responsible for high-resolution color vision.FLICKR, NATIONAL EYE INSTITUTEOn August 21, the moon will pass between the Earth and the sun, resulting in a total solar eclipse visible across a large strip of the United States. Self-proclaimed eclipse-chaser Ralph Chou, an emeritus professor of optometry at the University of Waterloo, has been working to spread awareness about eye-safety during eclipses for around 30 years. Last year, he put together the American Astronomical Society’s technical guide to eye safety, aimed at everyone from astronomers to educators to medical professionals.

The Scientist spoke to Chou to find out what happens to the eye when exposed to too much sunlight, and how to watch next week’s solar eclipse safely.

The Scientist: How can too much sunlight damage the eye?

Ralph Chou: Light comes into the eye and goes through all the various layers of cells until it reaches the photoreceptors—essentially, the bottom of a stack of cells. The photoreceptors themselves guide the light towards a specialized structure [of the cells] called the outer segment, where there is a stack of discs that contain the visual pigment. Under normal circumstances, the light would interact with the pigment, which generates an electrical signal that then starts the process of sending an impulse through the optic nerve to the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform