Your Office Has a Distinct Microbiome

Researchers detail the major factors shaping the microbiomes that surround us while we work.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

MICROBIAL COWORKERS: Infrared (top) and normal (bottom; right) images of microbiologist Jessica Green taking a built-environment microbiome sample from a desktop surface in a classroom at the Lillis Business Complex at the University of Oregon.KATE LAUE

Although we normally associate microbial assemblages with mammalian guts, it turns out buildings have microbiomes too. For the last decade, Scott Kelley, a biologist at San Diego State University, and his fellow pioneers in the growing field of built-environment microbiology have been studying factors that shape those microbial communities and how they affect the health of people who work and live in them. “Westerners spend about 90 percent of their time indoors,” says Kelley. “We would like to know exactly what’s in there and who’s growing. Is it dangerous? How different is it from the outside?”

JEFF KLIINEAs a postdoc in the lab of Norman Pace at the University of Colorado Boulder, Kelley spent his days sampling things like shower curtains and pools. As he and his colleagues catalog the bacteria and fungi populating our homes, offices, and hospitals, they’ve highlighted the importance of variables such as geography (PLOS ONE, 7:e37849, 2012) and building ventilation (ISME J, 6:1469-79, 2012). But they have run up against one very important and hard-to-isolate variable: building materials. The question of whether different types of indoor surfaces or building materials favor some microbial communities over others has complicated indoor-microbiome research because building material can’t always be separated from other variables, such as location or usage. One would be hard-pressed, for example, to find an office with carpet on a surface other than the floor, or ceiling tiles that ever have contact with the bottoms of people’s feet. “It’s hard to decouple all these different factors,” says Sean Gibbons, a postdoc who studies human microbiomes at MIT. He says most indoor-microbiome research has not tried to control for the types or locations of surfaces sampled within a given room.

Kelley and colleagues at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution