360-Degree View of the Tomato

Researchers have sequenced 360 varieties of the tomato plant to create a comprehensive map of the evolution of the fruit from its wild form to the modern varieties.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The three evolutionary stages of tomatoes. From the left to right: Solanum pimpinellifolium, S. lycopersicum var. cerasiforme and S. lycopersicum.INSTITUTE OF VEGETABLES AND FLOWERS IN THE CHINESE ACADEMY OF AGRICULTURAL SCIENCES, BEIJING, CHINAThe typical red, modern tomato is about one hundred times bigger than its pea-sized wild ancestor, which originally came from the Andes region in South America. To track the long history of tomato breeding and understand how such human-imposed selection has changed the genome of the plant, an international team of researchers, have sequenced 360 tomato plant varieties, including wild and domesticated species. The results are published today (October 12) in Nature Genetics.

“Two years ago we only had one genome and now we have more than 300!” said Harry Klee, a horticultural scientist at the University of Florida who studies tomatoes and was not involved in the current study. “What makes this work really important is that it’s a foundation for future improvements on the tomato. We can now find causative genes for the traits we want. This is going to have a huge impact for tomato breeding very quickly.”

The large-scale effort, led by Sanwen Huang of the Institute of Vegetables and Flowers at the Chinese Academy of Agricultural Sciences in Beijing, China, has uncovered a signature of the modern, processing tomato used to make ketchup, a variant that gives some tomato varieties a pink color, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH