A Brush with Inheritance, 1878

Lampbrush chromosomes, first observed in the 19th century, still offer an unparalleled glimpse into how genetic information is organized in the cell.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

HOOPS AND LOOPS: The first observations of chromosomes in the lampbrush form were made in 1878 using stained sections of axolotl oocyte nuclei. Now, with phase contrast microscopy, scientists can observe the structures moving freely in solution, much as they would inside a developing egg cell. This chromosome, isolated from an axolotl oocyte and imaged in 2003, is almost one millimeter long. (Scale: 50 μm)GARRY MORGAN

In a laboratory in Kiel, Germany, in 1878, cytologist Walther Flemming saw something extraordinary through his microscope. He and a student were studying oocyte development using stained sections of nuclei from an axolotl, a type of salamander. In one of those sections, Flemming could make out long, thin objects with fiber-like protrusions that formed loops, giving the cellular structures a fuzzy appearance.

In 1882, he published his observations of these “merkwürdige und zierliche Anordnungen”—strange and delicate structures. As for what they were, however, Flemming was stumped. “He thought they might be artifacts,” says Garry Morgan, a geneticist at the University of Nottingham in the U.K. “He wasn’t convinced that they were truly cellular structures. . . . He was struggling to recognize what they were—which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies