A Brush with Inheritance, 1878

Lampbrush chromosomes, first observed in the 19th century, still offer an unparalleled glimpse into how genetic information is organized in the cell.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

HOOPS AND LOOPS: The first observations of chromosomes in the lampbrush form were made in 1878 using stained sections of axolotl oocyte nuclei. Now, with phase contrast microscopy, scientists can observe the structures moving freely in solution, much as they would inside a developing egg cell. This chromosome, isolated from an axolotl oocyte and imaged in 2003, is almost one millimeter long. (Scale: 50 μm)GARRY MORGAN

In a laboratory in Kiel, Germany, in 1878, cytologist Walther Flemming saw something extraordinary through his microscope. He and a student were studying oocyte development using stained sections of nuclei from an axolotl, a type of salamander. In one of those sections, Flemming could make out long, thin objects with fiber-like protrusions that formed loops, giving the cellular structures a fuzzy appearance.

In 1882, he published his observations of these “merkwürdige und zierliche Anordnungen”—strange and delicate structures. As for what they were, however, Flemming was stumped. “He thought they might be artifacts,” says Garry Morgan, a geneticist at the University of Nottingham in the U.K. “He wasn’t convinced that they were truly cellular structures. . . . He was struggling to recognize what they were—which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel