AAAAA Is for Arrested Translation

Multiple consecutive adenosine nucleotides can cause protein translation machinery to stall on messenger RNAs.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Ribosome translating mRNAWIKIMEDIA, NICOLLE RAGER, NATIONAL SCIENCE FOUNDATIONInterruption of the protein translation machinery as it reads a messenger RNA (mRNA) transcript is rare but problematic. A new study in Science Advances today (July 24) reveals that one cause for such arrest is the mRNA sequence itself—specifically, strings of multiple adenosine (A) nucleotides. Although such translation stalling on poly(A) stretches had been observed previously, it was thought that the encoded amino acids were to blame. The finding that in fact the nucleotides are responsible could have important implications for gene mutations previously considered silent, or synonymous.

“That it’s really the RNA sequence and not the protein sequence which is important—that was a serendipitous finding, and what’s beautiful . . . is that they followed it up,” said cell and molecular geneticist Jonathan Dinman of the University of Maryland who was not involved in the work. “They were looking for one thing . . . but found the unexpected.”

Ribosomes, the proteins that read the codon sequences of mRNA transcripts and translate them into amino acid chains, occasionally stall. And when they do, the general result is degradation of both the mRNA and the unfinished protein. There are several reasons for ribosomal arrest, including mutations to the mRNA sequence or impassable secondary structures formed by aberrant folding of the RNA. However, stalling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours