AAAAA Is for Arrested Translation

Multiple consecutive adenosine nucleotides can cause protein translation machinery to stall on messenger RNAs.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Ribosome translating mRNAWIKIMEDIA, NICOLLE RAGER, NATIONAL SCIENCE FOUNDATIONInterruption of the protein translation machinery as it reads a messenger RNA (mRNA) transcript is rare but problematic. A new study in Science Advances today (July 24) reveals that one cause for such arrest is the mRNA sequence itself—specifically, strings of multiple adenosine (A) nucleotides. Although such translation stalling on poly(A) stretches had been observed previously, it was thought that the encoded amino acids were to blame. The finding that in fact the nucleotides are responsible could have important implications for gene mutations previously considered silent, or synonymous.

“That it’s really the RNA sequence and not the protein sequence which is important—that was a serendipitous finding, and what’s beautiful . . . is that they followed it up,” said cell and molecular geneticist Jonathan Dinman of the University of Maryland who was not involved in the work. “They were looking for one thing . . . but found the unexpected.”

Ribosomes, the proteins that read the codon sequences of mRNA transcripts and translate them into amino acid chains, occasionally stall. And when they do, the general result is degradation of both the mRNA and the unfinished protein. There are several reasons for ribosomal arrest, including mutations to the mRNA sequence or impassable secondary structures formed by aberrant folding of the RNA. However, stalling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies