Gladieria sulphurariaGerald SchoenknechtGenes picked up from prokaryotes likely helped an algal species adapt to its extreme environment—acidic hot springs worldwide—according to new research published today (March 7) in Science. Specifically, researchers estimate that about 5 percent of the extremophilic red agla’s protein-coding genes were picked up from bacteria or archaea, granting the metabolic flexibility to survive the extraordinarily conditions.
“It was mostly assumed that eukaryote cells can’t withstand such harshness, but the data show they can—they get the solutions from the prokaryotic world,” said Eduardo Rocha, a microbial evolutionary genomicist at the Institut Pasteur in Paris who was not involved in the research. Although there have been many documented cases of eukaryotic organisms picking up new genes from prokaryotes, it is the first to link laterally transferred genes with adaptive benefits, Rocha added. In this red alga, Galdieria sulphuraria, “for many of the [prokaryote-derived] genes, we can immediately see adaptive advantages,” he said.”
Eukaryote evolution mostly relies on tweaking what’s on hand—duplicating and repurposing genes already encoded in the organisms’ genomes. It’s well-known that prokaryotes like bacteria can pick up genetic material from their ...