Algae Get Help to Go to Extremes

A red alga appears to have adapted to extremely hot, acidic environments by collecting genes from bacteria and archaea.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Gladieria sulphurariaGerald SchoenknechtGenes picked up from prokaryotes likely helped an algal species adapt to its extreme environment—acidic hot springs worldwide—according to new research published today (March 7) in Science. Specifically, researchers estimate that about 5 percent of the extremophilic red agla’s protein-coding genes were picked up from bacteria or archaea, granting the metabolic flexibility to survive the extraordinarily conditions.

“It was mostly assumed that eukaryote cells can’t withstand such harshness, but the data show they can—they get the solutions from the prokaryotic world,” said Eduardo Rocha, a microbial evolutionary genomicist at the Institut Pasteur in Paris who was not involved in the research. Although there have been many documented cases of eukaryotic organisms picking up new genes from prokaryotes, it is the first to link laterally transferred genes with adaptive benefits, Rocha added. In this red alga, Galdieria sulphuraria, “for many of the [prokaryote-derived] genes, we can immediately see adaptive advantages,” he said.”

Eukaryote evolution mostly relies on tweaking what’s on hand—duplicating and repurposing genes already encoded in the organisms’ genomes. It’s well-known that prokaryotes like bacteria can pick up genetic material from their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours