Algae Get Help to Go to Extremes

A red alga appears to have adapted to extremely hot, acidic environments by collecting genes from bacteria and archaea.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Gladieria sulphurariaGerald SchoenknechtGenes picked up from prokaryotes likely helped an algal species adapt to its extreme environment—acidic hot springs worldwide—according to new research published today (March 7) in Science. Specifically, researchers estimate that about 5 percent of the extremophilic red agla’s protein-coding genes were picked up from bacteria or archaea, granting the metabolic flexibility to survive the extraordinarily conditions.

“It was mostly assumed that eukaryote cells can’t withstand such harshness, but the data show they can—they get the solutions from the prokaryotic world,” said Eduardo Rocha, a microbial evolutionary genomicist at the Institut Pasteur in Paris who was not involved in the research. Although there have been many documented cases of eukaryotic organisms picking up new genes from prokaryotes, it is the first to link laterally transferred genes with adaptive benefits, Rocha added. In this red alga, Galdieria sulphuraria, “for many of the [prokaryote-derived] genes, we can immediately see adaptive advantages,” he said.”

Eukaryote evolution mostly relies on tweaking what’s on hand—duplicating and repurposing genes already encoded in the organisms’ genomes. It’s well-known that prokaryotes like bacteria can pick up genetic material from their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH