For almost any biological process, seeing is believing. Because of the role viruses play in infectious disease, many biologists would like to observe them doing their thing in real time. Fluorescence imaging provides one of the few noninvasive ways to observe how viruses transport their contents into a cell and how new viruses are assembled. Such studies require high-quality microscopes with sensitive cameras that can shoot multiple frames per second. As with cells, researchers have to make sure that the position of fluorescent labels and the experimental setup do not interfere with the behavior of the system that they are studying.
Viruses are small, and they can be structurally and functionally complex. While fluorescence imaging offers the unique opportunity to observe viruses both directly and noninvasively, there are plenty of pitfalls, says Börries Brandenburg, a senior scientist at Crucell, a biotechnology company in Leiden, Netherlands. “You need to know your ...