Andrea Eveland Teases Apart Gene Networks in Crop Plants

The Donald Danforth Plant Science Center researcher links complex traits to the genes that underlie them.

Written byKaren Zusi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© JENNIFER SILVERBERGAfter years of working in plant nurseries and flower shops, newly graduated biologist Andrea Eveland went looking for lab experience. She found it as a research assistant at Torrey Mesa Research Institute, an agricultural research branch of the biotech company Syngenta.

Mentored by the postdocs and other scientists in her lab, Eveland began learning about molecular biology and crop improvement. “I started applying to graduate programs in plant biology, and I came back to corn and agriculture immediately because I saw the future in that,” Eveland says.

In 2002, she entered a PhD program at the University of Florida under maize physiologist Karen Koch. Eveland’s research focused on the genes and enzymes that control sugars moving into developing maize kernels and how stress affects those pathways. As part of her work, she developed a strategy to analyze the expression of closely related genes, using high-throughput sequencing to profile the 3′ untranslated region of messenger RNAs in maize.1

But to continue working with gene networks, Eveland knew ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies