Antarctic Bacteria Latch Onto Ice with Molecular Fishing Rod

Researchers describe the first known bacterial adhesion molecule that binds to frozen water.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

HOOKED: Marinomonas primoryensis (about 1.5μm in length without the flagellum) latches onto ice floes in the Antarctic Ocean. COURTESY MAYA BAR DOLEVThe paper
M. Bar Dolev et al., “Putting life on ice: Bacteria that bind to frozen water,” J R Soc Interface, 13:20160210, 2016.

Antarctic anomaly
In 1999, Jack Gilbert set off for Antarctica looking for a natural antifreeze. Out among the sea ice, the microbial ecologist, now based at Argonne National Laboratory, found a bacterial antifreeze protein (AFP) called MpIBP that was hundreds of times larger than other known AFPs. It was an enigma, he says. “For years, I’ve been telling people we don’t really know what this protein does.”

Fishing for ice
Scientists now have a handle on its function. Ido Braslavsky of the Hebrew University of Jerusalem and colleagues placed Marinomonas primoryensis, which produces MpIBP, into a microfluidic flow chamber with a copper wire kept at sub-zero temps and embedded in the middle. Micrographs of bacteria streaming by the ice crystals around the wire showed the cells latching on. When the team introduced antibodies that disabled MpIBP, the bacteria slid off the ice, suggesting that the protein—which is shaped like a fishing line with a hook on the end—enables bacteria to cling to ice floes in their ocean habitat, says Braslavsky. It’s the first bacterial adhesion molecule discovered that sticks to ice.

Crystal-clear customization
The researchers built their device to have temperature control with millikelvin precision, crucial for studying ice because “it can just disappear” mid-experiment, says Braslavsky. Plus, the chamber’s thin design allowed for high-resolution images of individual bacteria bound to the ice.

Beyond Antarctica
Manipulating the adhesion protein with antibodies allowed Braslavsky’s group to disable specific structural regions one at a time, showing that only one domain in the “hook” at the very tip of MpIBP grabs onto ice. Adhesion-blocking antibodies could help prevent biofilm formation, says Braslavsky.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ben Andrew Henry

    This person does not yet have a bio.

Published In

November 2016

Nimble Neurons

The remarkable adaptability of the nervous system

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit