Antibiotics Increase Mouse Susceptibility to Dengue, West Nile, and Zika

The drugs’ disruption of the microbiome makes a subsequent flavivirus infection more severe.

Written byShawna Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

West Nile virusFLICKR, CDC/CYNTHIA GOLDSMITHIt’s a truism that antibiotics won’t help treat a viral infection. And it now appears they could even hurt, making viral infections more severe. In a study out today (March 27) in Cell Reports, researchers found that when mice were treated with antibiotics and then infected with pathogens in the flavivirus family (which includes Zika, West Nile, and dengue), they fared far worse than their untreated counterparts. The authors suggest the antibiotics may have compromised the animals’ immunity by altering their microbiomes.

“The clinical phenotype of the animals when they got antibiotics, compared to those that didn’t, was pretty dramatic. They got a lot sicker and then they died, ultimately, of West Nile encephalitis,” says Michael Diamond, an immunobiology researcher at Washington University School of Medicine in St. Louis who led the study. “And this was true not just for West Nile virus, but also for two related viruses in the family, Zika virus and also dengue virus.”

While the idea that antibiotics can modulate antiviral immunity is not new, an interesting aspect of this study is that it suggests a mechanism for that effect, says Paulo Verardi, a virologist at the University of Connecticut who was not involved in the study—namely, that changes in gut microbes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH