Artificial Intelligence Discovers Potent Antibiotic

Researchers used a machine-learning platform to test more than 100 million molecules for antibacterial activity.

Written byAmy Schleunes
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, IMAGE JUNGLE

Anewly designed artificial intelligence tool based on the structure of the brain has identified a molecule capable of wiping out a number of antibiotic-resistant strains of bacteria, according to a study published on February 20 in Cell. The molecule, halicin, which had previously been investigated as a potential treatment for diabetes, demonstrated activity against Mycobacterium tuberculosis, the causative agent of tuberculosis, and several other hard-to-treat microbes.

The discovery comes at a time when novel antibiotics are becoming increasingly difficult to find, reports STAT, and when drug-resistant bacteria are a growing global threat. The Interagency Coordination Group (IACG) on Antimicrobial Resistance convened by United Nations a few years ago released a report in 2019 estimating that drug-resistant diseases could result in 10 million deaths per year by 2050. Despite the urgency in the search for new antibiotics, a lack of financial incentives has caused pharmaceutical companies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies