Atlantic Circulation Weakest in More Than a Millennium: Study

Researchers use proxy indicators to confirm long-term changes to the Atlantic Meridional Overturning Circulation, which have profound implications for future climate in North America and Europe.

| 3 min read
a map of the world with red and blue lines showing how masses of water circulate

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, ARISTOTOO

An oceanic “conveyer belt” that pulls warm water from tropical regions up into the northern Atlantic and cold water back toward the south is now the weakest it’s been in more than 1,000 years, a new study finds. The work, published yesterday (February 25) in Nature Geosciences, aligns with earlier predictions and findings about the effects of climate change on what’s known as the Atlantic Meridional Overturning Circulation (AMOC), but uses proxy measures to go further back in time and confirm the unprecedented nature of these recent changes.

“I think it just makes this conclusion considerably stronger,” Stefan Rahmstorf, an oceanographer at the Potsdam Institute for Climate Impact Research in Germany and a coauthor of the study, tells The Washington Post.

Rahmstorf and his colleagues compared the results from 11 indicators of the strength of the AMOC’s circulation, which has only been measured directly since 2004. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio