Bacteria Make Diesel Molecules

By engineering the genome of E. coli with genes from several sources, scientists have coaxed the microbe to produce diesel-replica hydrocarbons.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, USDAA team of British researchers genetically modified Escherichia coli bacteria to convert sugar and yeast extract into long-chained hydrocarbons, otherwise known as diesel molecules, according to a report out this week (April 22) in Proceedings of the National Academy of Sciences.

“Rather than making a replacement fuel like some biofuels, we have made a substitute fossil fuel,” lead author John Love of the University Exeter, U.K., told BBC News. “The idea is that car manufacturers, consumers, and fuel retailers wouldn’t even notice the difference—it would just become another part of the fuel production chain.”

The researchers took a strain of E. coli that usually converts sugar to fat and spliced into its genome DNA sequences from several sources—including the insect pathogen Photorhabdus luminescens, the cyanobacterium Nostoc punctiforme, the soil microbe Bacillus subtilis, and the camphor tree Cinamomum camphora. For the moment, the bacteria are fed sugar and yeast extract, so the petroleum-replica hydrocarbons they produce would be more expensive than that refined from naturally occurring oil. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome