Bacterial Gene Transfer Gets Sexier

Mycobacterium smegmatis can donate larger portions of its genome to other bacteria than previously thought, approaching the level of gene shuffling seen in sexual reproduction.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mycobacterium tuberculosis (pictured) is related to Mycobacterium smegmatis.FLICKR, NIAID

In what appears to be a novel form of bacterial gene transfer, or conjugation, the microbe Mycobacterium smegmatis can share multiple segments of DNA at once to fellow members of its species, according to a study published today (July 9) in PLOS Biology. The result: the generation of genetic diversity at a pace once believed to be reserved for sexual organisms.

“It is a very nice study providing clear evidence that, in Mycobacterium smegmatis at least, conjugation underlies much of species diversity,” said Richard Meyer, who studies conjugation at The University of Texas at Austin, in an email to The Scientist.

Traditionally, transfer of genetic material through conjugation has been considered an incremental process. Plasmids mediate the transfer of short segments of DNA, one at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo