Bacterial Sacrifice

Patterns of cell death aid in the formation of beneficial wrinkles during the development of bacterial biofilms.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WRINKLES IN TIME: Researchers grew a colony of bacteria with Sytox Green, a fluorescent marker that lit up when cells died. As the colony grew, its extracellular matrix restricted the movement of cells, until those cells on the underside of the film began to die. The areas with dead cells (green) experience a release of mechanical pressure imposed by the extracellular matrix, allowing the film to buckle and form the wrinkled surface seen in some bacterial colonies.BIOFILM COURTESY OF SUEL LAB;
ILLUSTRATION © PRECISION GRAPHICS

M. Asally et al., “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” PNAS, 109:18891-96, 2012. Bacteria can form multicellular biofilms, which are glued together by an extracellular matrix. Wrinkles in the film—large enough to see with the naked eye—help to provide protection from penetration by water and gases and appear to help the colony ward off antibiotics. The physical forces shaping these 3-D structures were unknown, but Gürol Süel of the University of California at San Diego and his colleagues now show that localized cell death appears to facilitate the formation of wrinkles. Kenneth Bayles, a professor at the University of Nebraska Medical Center, who was not part of the study, says cell death in bacterial colonies has been underappreciated, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb