Banking on iPSCs

A flurry of induced pluripotent stem cell banks are coming online, but they face significant business challenges.

Written byKerry Grens
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

WIKIMEDIA, GOLDMUND100About four years ago, Jay Tischfield, the director of RUCDR Infinite Biologics, a long-standing biorepository at Rutgers University, found himself sitting on a gold mine. RUCDR had recently gotten into the business of banking induced pluripotent stem cell (iPSC) lines as part of an initiative through the National Institute of Mental Health (NIMH). This was still early days in iPSC derivation, a few years after the pioneers of the field had figured out how to turn skin cells into pluripotent cells.

But not long into this new endeavor, “something important happened in the field,” Tischfield recalled. Researchers reported for the first time that they could induce pluripotency from blood cells. It just so happened that RUCDR was in possession of a massive collection of blood cell lines, each with a heap of information on the donor. “There we were, standing on what is perhaps one of the world’s, if not the world’s, largest collection of genetically defined . . . lymphocytes from literally almost a half a million subjects,” he said.

All of these non-transformed small lymphocytes had been cryopreserved as back-ups for transformed cell lines. “And it turned out these were fantastic for making iPSCs,” said Tischfield. “We could make iPSCs with about a 95 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series