Becoming Acculturated

Techniques for deep dives into the microbial dark matter

Written byJeffrey M. Perkel
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

A HELPING HAND: To identify and cultivate bacteria whose growth depends on a soluble growth factor, Lewis plated bacteria from sand grains on agar (A) and isolated and streaked candidate pairs (B). The growth of KLE1104 (green) depends on KLE1011 (white), as its colonies get smaller the farther away they are from the helper cells (C). Used media from a helper strain culture is sufficient to support KLE1104 growth, indicating a growth factor is all that’s missing. A. D'ONOFRIO ET AL., CHEMISTRY & BIOLOGY, 17:254-64, 2010If you take a sample of seawater and plate it on a typical petri dish, colonies of bacteria will flourish. Each of those colonies springs from a single cell; counting those colonies provides an estimate of the number and variety of organisms in the water sample. But count the cells in that same sample directly, and you’ll find you’ve only scratched the surface.

That difference is called “The Great Plate Count Anomaly,” and it is vast. By some estimates, direct cultivation captures just 0.01 percent to 1 percent of the bacterial diversity in biological samples. The rest represents a missed opportunity of sorts—organisms whose ecologic functions and metabolic potentials researchers could glimpse, perhaps by sequencing their DNA, but never directly study. This dark matter of the microbial world could be an untapped gold mine of antibiotics, biofuels, bioremediators, and more. (See “Lost Colonies,” The Scientist, October 2015.)

In the world of microbiology, such organisms are designated uncultivable. But that label isn’t quite right, says J. Cameron Thrash, a microbiologist at the Louisiana State University in Baton Rouge; after all, these organisms grow in nature, some exceptionally successfully. “I ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH