Becoming Acculturated

Techniques for deep dives into the microbial dark matter

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

A HELPING HAND: To identify and cultivate bacteria whose growth depends on a soluble growth factor, Lewis plated bacteria from sand grains on agar (A) and isolated and streaked candidate pairs (B). The growth of KLE1104 (green) depends on KLE1011 (white), as its colonies get smaller the farther away they are from the helper cells (C). Used media from a helper strain culture is sufficient to support KLE1104 growth, indicating a growth factor is all that’s missing. A. D'ONOFRIO ET AL., CHEMISTRY & BIOLOGY, 17:254-64, 2010If you take a sample of seawater and plate it on a typical petri dish, colonies of bacteria will flourish. Each of those colonies springs from a single cell; counting those colonies provides an estimate of the number and variety of organisms in the water sample. But count the cells in that same sample directly, and you’ll find you’ve only scratched the surface.

That difference is called “The Great Plate Count Anomaly,” and it is vast. By some estimates, direct cultivation captures just 0.01 percent to 1 percent of the bacterial diversity in biological samples. The rest represents a missed opportunity of sorts—organisms whose ecologic functions and metabolic potentials researchers could glimpse, perhaps by sequencing their DNA, but never directly study. This dark matter of the microbial world could be an untapped gold mine of antibiotics, biofuels, bioremediators, and more. (See “Lost Colonies,” The Scientist, October 2015.)

In the world of microbiology, such organisms are designated uncultivable. But that label isn’t quite right, says J. Cameron Thrash, a microbiologist at the Louisiana State University in Baton Rouge; after all, these organisms grow in nature, some exceptionally successfully. “I ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome