Booger Bacteria’s Sweet Immune Suppression

Sweet taste receptor-activating molecules produced by sinus microbes suppress the local innate immune system in humans.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, LHOONStaphylococcus bacteria from people’s noses produce amino acids that curb secretions of antimicrobial proteins in the sinus, according to a report published yesterday (September 5) in Science Signaling. The amino acids activate sweet taste receptors present on sinus cells, suggesting that pharmaceutical inhibition of these receptors may have the potential to treat sinus infections.

“This work expands upon a direction of research involving taste receptors and identifies mechanisms by which Staphylococcus bacteria modulate host immunity via interactions with these receptors,” says Martin Desrosiers of the University of Montreal who was not involved with the project. “It also helps explain how bacteria can contribute to the development and persistence of chronic rhinosinusitis,” he adds.

Taste receptors are only called taste receptors because they were first discovered on tongue cells, explains Robert Lee of the University of Pennsylvania Perelman School of Medicine in Philadelphia. But in fact, he says, “they are just chemosensors,” and are found in many different parts of the body, such as the kidney, pancreas, brain, and sinus. “We only know the tip of the iceberg of what ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH