Brain-Computer Interface User Types 90 Characters Per Minute with Mind

The experimental system, developed and tested in just one patient so far, relies on brain signals associated with handwriting to achieve the fastest communication yet seen with BCI.

| 4 min read
an illustration of a man with electrodes in his brain thinking about writing the word "hello," and the word appearing on a computer screen

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: F. WILLETT ET AL./NATURE 2021/ERIKAWOODRUM

A brain-implant system trained to decode the neural signals for handwriting from a paralyzed man enabled a computer to type up to 90 characters per minute with 94 percent accuracy, researchers report yesterday (May 12) in Nature. The study’s authors say this brain-computer interface (BCI) is a considerable improvement over other experimental devices aimed at facilitating communication for people who cannot speak or move, but many steps remain before it might be used clinically.

“There are so many aspects of [the study] that are great,” says Emily Oby, who works on BCIs at the University of Pittsburgh and was not involved in the work. “It’s a really good demonstration of human BCI that is working towards clinical viability,” and also contributes to understanding why the handwriting-based system seems to work better than BCIs based on translating the neural signals for more straightforward physical motions ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio