“Breathprints” Could Diagnose Disease

Researchers can identify individuals by the unique chemical signatures in their breath, suggesting that exhalations could be used for metabolomic tests.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

XUE LI / ETH ZURICHEvery individual has a signature composition of metabolites—or compounds produced by chemical reactions in the body—in their exhaled breath, according to a study published this week (April 3) in PLOS ONE. These unique “breathprints” could one day be used in addition to blood or urine tests to reveal biomarkers of disease or test athletes for doping.

Previous work indicated that the presence of infections or even cancer might be detected in breath, but it was not clear whether the metabolic contents of breath varied enough between individuals, and whether each individual’s breathprint remained stable enough over time, to make it a genuine candidate for diagnostic use. To find out, a group of researchers led by Renato Zerobi of the Swiss Federal Institute of Technology in Zurich got 11 volunteers to blow into a mass spectrometer, which almost instantly parsed the exhalation into its chemical components.

Although each person’s breathprint changed slightly from sample to sample over the course of nine days of testing, the researchers observed that every volunteer had a chemical signature that was stable and specific enough to identify ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH