Corals’ pH Sensor Identified

Soluble adenylyl cyclase measures and responds to pH changes in coral cells, but whether it can help the animals withstand ocean acidification is not yet known.

Written byAshley P. Taylor
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

WIKIMEDIA, AHMED ABDUL RAHMANResearchers have identified an enzyme that helps corals keep a steady pH in their cells, even as the acidity changes in their environments. Corals experience pH variation due to fluctuations in cellular metabolism, the differing pH needs of various parts of the coral polyp, and even the changing acidity of the ocean itself. The enzyme, soluble adenylyl cyclase (sAC), produces cyclic AMP (cAMP), a signaling molecule that researchers suspect triggers further chemical reactions to raise or lower cellular pH as needed.

Whether sAC can help corals withstand the ocean acidification that accompanies global climate change remains to be determined. The results appear today (November 1) in Proceedings of the Royal Society B.

“This is the first report or study showing cellular and molecular mechanisms by which corals can sense changes in pH and also adjust their intracellular pH,” says Martin Tresguerres, who led the work at the University of California, San Diego’s Scripps Institution of Oceanography. “Corals, as part of their physiology, they have huge changes in pH in different parts of the coral animal. And this is a first step to understand how they sense those changes and regulate their physiology accordingly.”

Most studies of sAC in mammals have measured extracellular pH, says Jung-Chin Chang, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH