CRISPR Is Overcome When Viruses Gang Up on Bacteria

Phages that die during bacterial invasion help other viruses defeat the microbes’ immune responses.

Written byKerry Grens
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Bacteria can fend off viral infections by chopping up their DNA with their CRISPR-based immune system, but sufficient numbers of phages can overwhelm microbes’ defenses. In two papers published in Cell today (July 19), scientists report that part of phages’ strategy appears to be an “altruistic” method of invasion, in which viral genomes that never succeed in replicating nonetheless impair bacterial immunity and facilitate infection by other viruses.

“This work shows that phages can work together to disable bacterial immune systems, and this has important implications for using phage to treat human infections, since the dose of phage that is used can determine whether the phage is able to kill the bacteria,”

Stineke van Houte, a coauthor of one of the studies and a researcher at the University of Exeter, says in a press release.

To understand how phages get past bacteria’s CRISPR systems, van Houte and her colleagues looked ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH