CRISPR “Kill Switches” for GMOs

Researchers create an inducible method to remove specific genes and even kill escaped genetically modified organisms.

Written byJenny Rood
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, NISHIMASU ET AL.

An environmentally dependent method to excise particular genes and eliminate genetically modified organisms (GMOs) if they leave the lab, published this week (May 19) in Nature Communications, uses an inducible CRISPR/Cas9 genome-editing system to snip out vital pieces of the E. coli genome.

The most recent published attempts at creating such a GMO “kill switch” relied on making the survival of genetically-modified bacteria dependent on synthetic amino acids that were only available under laboratory conditions. In the latest study, scientists at MIT created a system that would instead make fatal changes to the bacterial genome when triggered by a change in environmental conditions.

The system, dubbed DNAi, contains two components: CRISPR targeting RNAs, which direct the destruction of a particular gene, are always expressed, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH