CRISPR Restores Muscle Function in Mice

Scientists use the gene-editing tool to treat animals with a rare form of congenital muscular dystrophy.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, DRA_SCHWARTZUsing CRISPR, researchers have successfully treated congenital muscular dystrophy type 1A (MDC1A), a rare disease that can lead to severe muscle wasting and paralysis, in mice. The team was able to restore muscle function by correcting a splicing site mutation that causes the disorder, according to a study published today (July 17) in Nature Medicine.

“Instead of inserting the corrected piece of information, we used CRISPR to cut DNA in two strategic places,” study coauthor Dwi Kemaladewi, a research fellow at the Hospital for Sick Children (Sick Kids) in Toronto, explains in a statement. “This tricked the two ends of the gene to come back together and create a normal splice site.”

By targeting both the skeletal muscles and peripheral nerves, the team was able to improve the animals’ motor function and mobility. “This is important because the development of therapeutic strategies for muscular dystrophies have largely focused on improving the muscle conditions,” Kemaladewi says in the release. “Experts know the peripheral nerves are important, but the skeletal muscles have been perceived as the main culprit in MDC1A and have ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences