CRISPR Screen Detects Functional Gene Regulation

A CRISPR-Cas9–based method probes the regulatory roles of noncoding DNA sequences.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© BRYAN SATALINOMost DNA does not code for proteins. And figuring out how, when, and where this genomic “dark matter” plays a role in gene regulation is a huge undertaking. Now, scientists have developed a tool that could help. In a paper published today (April 3) in Nature Biotechnology, a team from Duke University in Durham, North Carolina, describes a high-throughput screening technique that uses CRISPR-Cas9 epigenome editing to identify regulatory elements in the genomes of human cells.

“It turns out that most of the genetic variation that’s responsible for more common complex diseases—like cardiovascular disease, diabetes, and neurological disorders—actually happens in this region in between genes,” said coauthor Charles Gersbach of Duke. “The exciting thing is having methods available to annotate the function of the noncoding genome,” he added.

“The noncoding genome is vast, and it can be challenging to identify which regions are important for modulating protein-coding genes,” Neville Sanjana of New York University, who was not involved in the study, wrote in an email to The Scientist. This study “harnesses CRISPR pooled screening technology to help us figure out where the functional regions in the noncoding genome [are],” he explained.

Gersbach and colleagues created lentiviral libraries of guide RNAs to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome