Critical Connections

Through a series of sustained collaborations, Joshua Sanes has deciphered the molecular synergy that guides synapse formation.

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Joshua R. Sanes, Professor of Molecular and Cellular Biology, Paul J. Finnegan Family Director, Center for Brain Science, Harvard University PORTER GIFFORD

I did my thesis research during the Watergate hearings,” says Josh Sanes, who was studying the development of moth sensory neurons at Harvard in the early 1970s. “I sat in the lab cutting 1-micron sections for about a year,” he says. “I did not miss a single word.” The experience inspired him to spend some time on Capitol Hill. “I wanted to see the characters I’d been listening to on the radio,” he says.

The gig at the Office of Technology Assessment was “a gas,” says Sanes. “I got to brief Teddy Kennedy on one of my reports. That was a big thrill. I walked him all the way from the Congressional Office Building across the lawn to the hearing room.” But Sanes decided that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH