Custom-Made Molecules

A new prototype machine can make the biological molecules of one’s choice from digital DNA sequences.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ON-DEMAND BIOLOGICS: DNA sequence data are transmitted digitally to the digital-to-biological converter together with instructions for desired output. The machine designs and manufactures appropriate oligos and synthesizes the DNA. Depending on the instructions, the DNA is then automatically transcribed into RNA, translated into protein, or assembled into larger molecules and incorporated into bacteria.K.S. BOLES ET AL., “DIGITAL-TO-BIOLOGICAL CONVERTER FOR ON-DEMAND PRODUCTION OF BIOLOGICS,” NAT BIOTECHNOL, DOI:10.1038/NBT.3859, 2017. IMAGE USED WITH PERMISSION FROM DAN GIBSON

Imagine a deadly virus emerging in a part of the world without the resources for vaccine development. Now imagine if researchers on the other side of the world could send local medics an effective vaccine by email.

Dan Gibson and Craig Venter of Synthetic Genomics in La Jolla, California, started to imagine such a scenario shortly after an avian flu outbreak in China in 2013. The company had just developed a prototype DNA synthesizer (the BioXp 3200, now commercially available) that could produce DNA molecules from just a digital sequence and some appropriate oligos—short nucleotide chains for initiating DNA synthesis. So, when Gibson received notice of the H7N9 bird flu threat in Asia, he was ready. Armed with the publicly available sequences of the H7 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform