Custom-Made Molecules

A new prototype machine can make the biological molecules of one’s choice from digital DNA sequences.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ON-DEMAND BIOLOGICS: DNA sequence data are transmitted digitally to the digital-to-biological converter together with instructions for desired output. The machine designs and manufactures appropriate oligos and synthesizes the DNA. Depending on the instructions, the DNA is then automatically transcribed into RNA, translated into protein, or assembled into larger molecules and incorporated into bacteria.K.S. BOLES ET AL., “DIGITAL-TO-BIOLOGICAL CONVERTER FOR ON-DEMAND PRODUCTION OF BIOLOGICS,” NAT BIOTECHNOL, DOI:10.1038/NBT.3859, 2017. IMAGE USED WITH PERMISSION FROM DAN GIBSON

Imagine a deadly virus emerging in a part of the world without the resources for vaccine development. Now imagine if researchers on the other side of the world could send local medics an effective vaccine by email.

Dan Gibson and Craig Venter of Synthetic Genomics in La Jolla, California, started to imagine such a scenario shortly after an avian flu outbreak in China in 2013. The company had just developed a prototype DNA synthesizer (the BioXp 3200, now commercially available) that could produce DNA molecules from just a digital sequence and some appropriate oligos—short nucleotide chains for initiating DNA synthesis. So, when Gibson received notice of the H7N9 bird flu threat in Asia, he was ready. Armed with the publicly available sequences of the H7 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research