Damage Patroller

Stephen Elledge has built a career studying how eukaryotic cells maintain genomic integrity.

Written byAnna Azvolinsky
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

STEPHEN J. ELLEDGE
Gregor Mendel Professor of Genetics and Medicine Harvard Medical School
Geneticist, Brigham and Women’s Hospital Investigator, Howard Hughes Medical Institute
COURTESY OF STEPHEN ELLEDGE

When he began a postdoc in Ronald Davis’s laboratory at Stanford University in 1984, Stephen Elledge wanted to develop new ways to knock out and mutate specific genes in mammals. His first experimental results contained a serendipitous artifact that laid the foundation for a scientific career studying how eukaryotic cells deal with damage to their DNA.

As a start to designing those gene-targeting tools, Elledge, now a professor of genetics at Harvard Medical School, began by trying to clone the mammalian homolog of recA, a bacterial gene required for DNA repair via recombination. Because there was no mammalian recA homolog, Elledge attempted to clone the Saccharomyces cerevisiae (baker’s yeast) homolog using a novel method that included an antibody step. The yeast gene Elledge cloned turned out to be RNR2, which encodes the small subunit of ribonucleotide reductase. This enzyme catalyzes the reaction that turns ribonucleotides into the deoxyribonucleotides needed to make new DNA. Elledge had used an anti-RecA antibody that inadvertently cross-reacted with the last four amino acids of Rnr2 in yeast. “It was a depressing day because I did not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies