Data Diving

What lies untapped beneath the surface of published clinical trial analyses could rock the world of independent review.

Written byKerry Grens
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

TIP OF THE ICEBERG: Independent reviewers of clinical trial data have access to just a minuscule percentage of the actual information. PUSHART

A few weeks before Christmas 2009, the world was in the grip of a flu pandemic. More than 10,000 people had died, and roughly half a million people had been hospitalized worldwide; tens of millions had been infected. In the United States, millions of doses of Tamiflu, an antiviral medication, had been released from national stockpiles. “December 2009 was a point in the H1N1 outbreak where there was a lot of talk about a second or third wave of this virus coming back and being more deadly,” says Peter Doshi, now a postdoctoral researcher at Johns Hopkins University and a member of an independent team of researchers tasked with analyzing Tamiflu clinical trials. “Anxiety and concern were really peaking.”

So it was no small blow ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA