Dead or Alive?

Scientists create nontoxic pH nanosensors to assess viability of transplanted therapeutic cells.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TINY pH DETECTORS: The team encapsulated live liver cells together with a liposome containing L-arginine inside a hydrogel microcapsule before transplantation into mice.GEORGE RETSECKMONITORING CELL VIABILITY BY MRI: When cells die, the acidity within the microcapsule increases, changing the contrast of the L-arginine liposomes. Using CEST-MRI the researchers estimated a 33 percent drop of signal when all of the 2 million transplanted cells died. GEORGE RETSECK; MRI IMAGES COURTESY OF MICHAEL MCMAHONEncapsulating therapeutic cells inside hydrogel microparticles before transplanting them into the body has become a promising approach for cell-based therapies, such as injecting new pancreatic islet cells into diabetic patients whose own cells have stopped producing insulin. The hydrogel not only keeps the cells at the injection site, it spares them from attack by the host’s immune system.

One hindrance to the technique’s more widespread clinical application, however, has been the inability to safely assess the cells’ long-term survival and function once implanted. Michael McMahon at Johns Hopkins University in Baltimore, Maryland, and colleagues have now created biocompatible cell-viability nanosensors that can be incorporated into the hydrogel.

McMahon’s team had previously shown that L-arginine is an excellent contrast agent—a substance that enhances visualization—for a version of MRI called chemical exchange saturation transfer (CEST). The degree of contrast exhibited by the chemical depends on the pH of its surrounding environment. So McMahon devised a sensor out of lipid nanoparticles that contained L-arginine.

The team tested the particles’ cell death–detection ability by encapsulating them, along with liver cells, in hydrogel microcapsules, and transplanting them into ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies