Dead or Alive?

Scientists create nontoxic pH nanosensors to assess viability of transplanted therapeutic cells.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TINY pH DETECTORS: The team encapsulated live liver cells together with a liposome containing L-arginine inside a hydrogel microcapsule before transplantation into mice.GEORGE RETSECKMONITORING CELL VIABILITY BY MRI: When cells die, the acidity within the microcapsule increases, changing the contrast of the L-arginine liposomes. Using CEST-MRI the researchers estimated a 33 percent drop of signal when all of the 2 million transplanted cells died. GEORGE RETSECK; MRI IMAGES COURTESY OF MICHAEL MCMAHONEncapsulating therapeutic cells inside hydrogel microparticles before transplanting them into the body has become a promising approach for cell-based therapies, such as injecting new pancreatic islet cells into diabetic patients whose own cells have stopped producing insulin. The hydrogel not only keeps the cells at the injection site, it spares them from attack by the host’s immune system.

One hindrance to the technique’s more widespread clinical application, however, has been the inability to safely assess the cells’ long-term survival and function once implanted. Michael McMahon at Johns Hopkins University in Baltimore, Maryland, and colleagues have now created biocompatible cell-viability nanosensors that can be incorporated into the hydrogel.

McMahon’s team had previously shown that L-arginine is an excellent contrast agent—a substance that enhances visualization—for a version of MRI called chemical exchange saturation transfer (CEST). The degree of contrast exhibited by the chemical depends on the pH of its surrounding environment. So McMahon devised a sensor out of lipid nanoparticles that contained L-arginine.

The team tested the particles’ cell death–detection ability by encapsulating them, along with liver cells, in hydrogel microcapsules, and transplanting them into ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH