Diagnosing Sepsis

An 11-gene set may help identify sepsis early, before it’s too late.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, ANDY LEPPARDA set of 11 genes may be key to distinguishing patients with sepsis, systemic inflammation caused by infection, from patients suffering from inflammation caused by noninfectious sources, according to a study published this week (May 13) in Science Translational Medicine.

“We’ve certainly shown that there is information in the gene expression space that can aid in diagnostics that’s not being used now,” coauthor Tim Sweeney of Stanford University told GenomeWeb. “What we’re looking forward to is showing that, in combination with current diagnostics, this will improve our ability to diagnose sepsis.”

Some 750,000 people in the U.S. die from sepsis annually, sometimes because it goes undiagnosed until it is too late. For every hour that antibiotic treatment is delayed, Sweeney noted, mortality risk increases by up to 8 percent. Currently, the only way to definitely identify an infectious cause of inflammation is a microbiological culture, a procedure that can take days. “You really need [a diagnostic] to be in that under-an-hour space in order to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours