Do-It-Yourself Medicine

Patients are sidestepping clinical research and using themselves as guinea pigs to test new treatments for fatal diseases. Will they hurt themselves, or science?

Written byJef Akst
| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

© KAMRUZZAMAN RATAN/ISTOCKPHOTO.COMOn August 10, 2011, Joan Valor Butler diluted a solution of 5 percent sodium chlorite in 1 gallon of slightly salted water, and slowly injected 1 liter of the mixture into her 42-year-old son’s feeding tube, at his request. Sodium chlorite is a chemical commonly used in low concentrations in camping water-purification kits and for municipal water treatment. Many also believed it to be the active ingredient of a promising drug in clinical trials for amyotrophic lateral sclerosis (ALS)—a disease Eric Valor has lived with for the better part of the past decade.

As the disease gradually paralyzed his entire body, Valor became an avid student of ALS, a degenerative disorder commonly known as Lou Gehrig’s disease and characterized by a deterioration of motor neurons. He had first learned about the intravenous drug, called NP001, in 2010, when its developer, Neuraltus Pharmaceuticals, announced it would soon be starting a Phase 1 trial and was recruiting ALS patients. Animal toxicology tests had demonstrated the drug’s safety, and a small study in an ALS mouse model suggested it may slow disease progression—most likely by reducing macrophage-initiated killing of neurons, a recently proposed mechanism for how ALS wreaks havoc on the body. Valor started a thread on an online ALS patient forum to discuss NP001, and several patients decided to inquire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel