Do Mice Make Bad Models?

A study suggests that some mouse models do not accurately mimic human molecular mechanisms of inflammatory response, but other mouse strains may fare better.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMABiomedical scientists have long relied on experimentation in mice to explore human disease and evaluate drug candidates. But mouse models do not accurately reflect the genetic and proteomic responses to acute inflammatory stress in humans, according to a new study. The findings, published today (February 11) in Proceedings of the National Academy of Sciences, detail the oft-suspected limits of murine models for studying inflammatory response, and emphasize the need for research on human physiology.

“We’re not saying don’t use animal models, but we need to recognize that simple model systems do not reproduce complex human disease,” said Ronald Tompkins, a professor of surgery at Harvard Medical School and co-author of the study.

But Peter Ward, a professor of pathology at the University of Michigan Medical School who was not involved in the research, said the study doesn’t render mouse models irrelevant. “The fact that mice responses do not mimic the rather uniform responses in humans may be due to the fact that mice, but not humans, are inbred,” said Ward in an email to The Scientist. The inflammatory responses of mice are highly dependent on genetic background, so “until other mouse strains are studied, the authors need to be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences